The TLBIP VAE3, TLBIP VAE3NXS characteristics are:
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:
The entry is one of the following
A 128-bit stage 1 translation table entry, from any level of the translation table walk.
A 64-bit stage 1 translation table entry, from any level of the translation table walk, if TTL[3:2] is 0b00.
The entry would be used to translate the specified VA using the EL3 translation regime.
The invalidation applies to the PE that executes this System instruction.
If FEAT_XS is implemented, the nXS variant of this System instruction is defined.
Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all memory accesses using in-scope old translation information to complete before it is considered complete.
The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses with XS attribute set to 0 are complete.
This instruction is present only when FEAT_D128 is implemented and FEAT_AA64 is implemented. Otherwise, direct accesses to TLBIP VAE3, TLBIP VAE3NXS are UNDEFINED.
TLBIP VAE3, TLBIP VAE3NXS is a 128-bit System instruction.
127 | 126 | 125 | 124 | 123 | 122 | 121 | 120 | 119 | 118 | 117 | 116 | 115 | 114 | 113 | 112 | 111 | 110 | 109 | 108 | 107 | 106 | 105 | 104 | 103 | 102 | 101 | 100 | 99 | 98 | 97 | 96 |
RES0 | VA[55:12] | ||||||||||||||||||||||||||||||
95 | 94 | 93 | 92 | 91 | 90 | 89 | 88 | 87 | 86 | 85 | 84 | 83 | 82 | 81 | 80 | 79 | 78 | 77 | 76 | 75 | 74 | 73 | 72 | 71 | 70 | 69 | 68 | 67 | 66 | 65 | 64 |
VA[55:12] | |||||||||||||||||||||||||||||||
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
RES0 | TTL | RES0 | |||||||||||||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | |||||||||||||||||||||||||||||||
Reserved, RES0.
Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate) and VA will be affected by this System instruction.
The treatment of the low-order bits of this field depends on the translation granule size, as follows:
Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.
Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the instruction is executed, because VA[13:12] have no effect on the operation of the instruction.
Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the instruction is executed, because VA[15:12] have no effect on the operation of the instruction.
Reserved, RES0.
Translation Table Level. Indicates the level of the translation table walk that holds the leaf entry for the address being invalidated.
TTL | Meaning |
---|---|
0b00xx |
No information supplied as to the translation table level. Hardware must assume that the entry can be from any level. In this case, TTL<1:0> is RES0. |
0b01xx | The entry comes from a 4KB translation granule. The level of walk for the leaf level 0bxx is encoded as: 0b00 : Level 0. 0b01 : Level 1. 0b10 : Level 2. 0b11 : Level 3. |
0b10xx | The entry comes from a 16KB translation granule. The level of walk for the leaf level 0bxx is encoded as: 0b00 : Reserved. Treat as if TTL<3:2> is 0b00. 0b01 : Level 1. 0b10 : Level 2. 0b11 : Level 3. |
0b11xx | The entry comes from a 64KB translation granule. The level of walk for the leaf level 0bxx is encoded as: 0b00 : Reserved. Treat as if TTL<3:2> is 0b00. 0b01 : Level 1. 0b10 : Level 2. 0b11 : Level 3. |
If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are required by the architecture to be invalidated from the TLB.
Reserved, RES0.
Reserved, RES0.
Accesses to this instruction use the following encodings in the System instruction encoding space:
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b01 | 0b110 | 0b1000 | 0b0111 | 0b001 |
if !(IsFeatureImplemented(FEAT_D128) && IsFeatureImplemented(FEAT_AA64)) then UNDEFINED; elsif PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then UNDEFINED; elsif PSTATE.EL == EL2 then UNDEFINED; elsif PSTATE.EL == EL3 then if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then return; else AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Broadcast_NSH, TLBILevel_Any, TLBI_AllAttr, X[t2, 64]:X[t, 64]);
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b01 | 0b110 | 0b1001 | 0b0111 | 0b001 |
if !(IsFeatureImplemented(FEAT_D128) && IsFeatureImplemented(FEAT_AA64)) then UNDEFINED; elsif !IsFeatureImplemented(FEAT_XS) then UNDEFINED; elsif PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then UNDEFINED; elsif PSTATE.EL == EL2 then UNDEFINED; elsif PSTATE.EL == EL3 then if IsFeatureImplemented(FEAT_RME) && !ValidSecurityStateAtEL(EL3) then return; else AArch64.TLBIP_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID_NONE, Broadcast_NSH, TLBILevel_Any, TLBI_ExcludeXS, X[t2, 64]:X[t, 64]);
21/03/2025 17:52; 154105dd5041532b480d9ef0c018b8420cbe5c19
Copyright © 2010-2025 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.